## Part 2.2 Continuous functions and their properties v1 2019-20

## Intermediate Values

Theorem 2.2.1 (Bolzano 1817) Intermediate Value Theorem

Suppose that f is a function continuous on a closed and bounded interval [a, b].

For all  $\gamma$  between f(a) and f(b) there exist  $c : a \leq c \leq b$  for which  $f(c) = \gamma$ .

Here 'between' means  $f(a) \leq \gamma \leq f(b)$  if  $f(a) \leq f(b), f(b) \leq \gamma \leq f(a)$  otherwise.

**Important** Do get the order of the quantifiers correct, "for all" first and "there exists" second, i.e.

 $\forall \gamma \text{ between } f(a) \text{ and } f(b) \exists c : a \leq c \leq b \text{ and } f(c) = \gamma.$ 

On a graph you would be starting with a point  $\gamma$  on the y-axis and finding a point c on the x-axis which maps to it.



Before the proof recall  $\mathbb{R}$  is *complete*. This means that every non-empty subset of  $\mathbb{R}$  which is bounded above has a least upper bound. That is:

 $(A \subseteq \mathbb{R} : A \neq \phi \text{ and } \exists M : \forall a \in A, a \leq M) \implies \text{lub}A \text{ exists.}$ 

And the definition of lubA is that, if  $\lambda = \text{lub}A$  then

- $\lambda$  is an upper bound:  $\forall a \in A, a \leq \lambda$ ,
- $\lambda$  is the *least* of all upper bounds; if  $\mu$  is an upper bound for A then  $\lambda \leq \mu$ .

Alternatively

• For all  $\delta > 0$ ,  $\lambda - \delta$  is **not** an upper bound for A which means  $\exists a \in A : \lambda - \delta < a \leq \lambda$ .

**Proof of I V Th**<sup>m</sup> We first 'translate and reflect' the function f. There are two cases;

- If  $f(a) \leq f(b)$  then  $f(a) \leq \gamma \leq f(b)$ . Define  $g(x) = f(x) \gamma$ , then  $g(a) \leq 0$  and  $g(b) \geq 0$ .
- If f(a) > f(b) then  $f(b) \le \gamma < f(a)$ . This time define  $g(x) = \gamma f(x)$ , then again  $g(a) \le 0$  and  $g(b) \ge 0$ .

Summing up, define

$$g(x) = \begin{cases} f(x) - \gamma & \text{if } f(a) \le f(b) \\ \gamma - f(x) & \text{if } f(a) > f(b) . \end{cases}$$

Then  $g(a) \leq 0 \leq g(b)$ .

If either g(a) = 0 or g(b) = 0 the proof is finished, simply choose c = a or b respectively.

Thus we may assume that we have *strict* inequalities in g(a) < 0 < g(b)and it suffices to find  $c \in (a, b) : g(c) = 0$ .

Consider the set

$$S = \{x \in [a, b] : g(x) < 0\}$$

Then  $S \neq \phi$  since  $a \in S$ , while  $S \subseteq [a, b]$  and so S is bounded above by b. Therefore, by the Completeness Axiom of  $\mathbb{R}$ , there exists  $c \in \mathbb{R} : c = \text{lub } S$ .

We want to first show that  $c \in (a, b)$ , i.e.  $c \neq a$  or b. From the definition of a function being continuous on a *closed* interval we have  $\lim_{x\to a+} g(x) = g(a)$  and  $\lim_{x\to b-} g(x) = g(b)$ .

Following the method of an earlier lemma we choose  $\varepsilon = |g(a)|/2 > 0$ in the definition of.  $\lim_{x\to a+} g(x) = gv(a)$ , to find  $\delta_1 > 0$  such that if  $a < x < a + \delta_1$  then g(x) < g(a)/2 < 0. This means  $[a, a + \delta_1) \subseteq S$  and so  $c \ge a + \delta_1$ .

Similarly, choosing  $\varepsilon = g(b)/2 > 0$  in the definition of.  $\lim_{x\to b^-} g(x) = g(b)$ , we find  $\delta_2 > 0$  such that if  $b - \delta_2 < x \leq b$  then g(x) > g(b)/2 > 0. this means all such  $x \notin S$  and so  $c \leq b - \delta_2$ .

From these two observations we deduce that  $c \in (a, b)$ .

Let  $\varepsilon > 0$  be given. Since g is continuous at c there exists  $\delta > 0$  such that if  $|x - c| < \delta$  then  $|g(x) - g(c)| < \varepsilon$ . That is

$$c - \delta < x < c + \delta \implies g(x) - \varepsilon < g(c) < g(x) + \varepsilon.$$
 (1)

First, choose  $x_1 = c + \delta/2$ . Then (1) implies  $g(c) > g(x_1) - \varepsilon$ . Yet  $x_1 > c$ , an **upper bound** on S and so  $x_1 \notin S$ , that is  $g(x_1) \ge 0$ . Combine to get  $g(c) > -\varepsilon$ .

Next, since  $c-\delta < c$ , the **least** upper bound on S, we have that  $c-\delta$  is not an upper bound on S, i.e. there exists some  $x_2 \in S$  satisfying  $c-\delta < x_2 < c$ . Then (1) implies  $g(c) < g(x_2) + \varepsilon$ . Yet  $x_2 \in S$  implies  $g(x_2) < 0$ . Combine as  $g(c) < \varepsilon$ .

Further combine to get  $-\varepsilon < g(c) < \varepsilon$ . True for all  $\varepsilon > 0$  implies g(c) = 0.

There is a good chance you will have used this result, for example by finding roots of a polynomial by looking for a sign change.

**Example 2.2.2** Let  $p(x) = x^3 - 6x^2 + 11x - 6$ . Show that there is a zero of this polynomial between 0 and 4. Is there a zero between 0 and 2.5?

**Solution** p(0) = -6 and p(4) = 6 so p(0) < 0 < p(4), i.e. 0 is an intermediate value between p(0) and p(4). Since p is a polynomial it is continuous so we can apply the Intermediate Value Theorem with  $\gamma = 0$  to deduce that there exists 0 < c < 4 for which p(c) = 0.

Since p(2.5) = -0.375 there is no sign change between 0 and 2.5 so we cannot apply the Intermediate Value Theorem with  $\gamma = 0$  to show there is a zero in [0, 2.5]. This is a weakness of this method to find roots for it is not hard to see that x = 1 is a root of p(x) in [0, 2.5].

In fact, from the graph you can see two roots between 0 and 2.5.



**Example 2.2.3** Show that for all real a, b > 0 there is a solution to  $a \sin x = b \cos x$  in  $[0, \pi/2]$ .

**Solution in Tutorial** Let  $f(x) = a \sin x - b \cos x$ . We see that f(0) = -b and  $f(\pi/2) = a$  so  $f(0) < 0 < f(\pi/2)$ . Since f is continuous on  $[0, \pi/2]$  the Intermediate Value Theorem implies there exists  $c \in (0, \pi/2)$  such that f(c) = 0, i.e.  $a \sin c = b \cos c$ .

**Example 2.2.4** (A special case of the) **Fixed Point Theorem**. If  $f : [0,1] \rightarrow [0,1]$  is continuous then there exists  $c \in [0,1]$  such that f(c) = c.

**Solution** Define g(x) = f(x) - x, a function continuous on [0, 1]. By definition  $0 \le f(x) \le 1$  for all  $0 \le x \le 1$ . In particular  $f(0) \ge 0$  and so

$$g(0) = f(0) - 0 \ge 0.$$

Similarly,  $f(1) \leq 1$  so

$$g(1) = f(1) - 1 \le 1 - 1 = 0.$$

That is,  $g(1) \leq 0 \leq g(0)$ . So apply I.V.Thm to g on [0, 1] to find c : g(c) = 0, i.e. f(c) = c.

This result should not be a surprise. Being continuous on a closed interval the function f is 'tied down' at f(0) and f(1). Since these values are between 0 and 1 the graph between them has to cross the line y = x. See Figure 1.

The same result should hold with y = x replaced by any continuous function between (0,0) and (1,1). For example see Figure 2 where  $y = x^3$ .



Figure 1: y = x

Figure 2:  $y = x^3$ 

**Example 2.2.5** If  $f : \mathbb{R} \to [1, 8]$  is continuous then there exists  $c \in \mathbb{R}$  such that  $f(c) = c^3$ .

**Solution in Tutorial** If there is a solution of  $f(c) = c^3$  then, since  $1 \le f(c) \le 8$  we have  $1 \le c^3 \le 8$ , i.e.  $1 \le c \le 2$ . This could be seen on the graph:



So we need only apply the Intermediate Value Theorem on the interval [1, 2].

Let  $g(x) = f(x) - x^3$ . Then  $g(1) = f(1) - 1^3 \ge 1 - 1 = 0$  since  $f(x) \ge 1$  for all  $x \in [1, 2]$ . Also  $g(2) = f(2) - 2^3 \le 8 - 8 = 0$  since  $f(x) \ge 8$  for all  $x \in [1, 2]$ . Thus  $g(1) \ge 0 \ge g(2)$ , i.e. 0 is an intermediate value. Apply the Intermediate Value Theorem to g on [1, 2] with  $\gamma = 0$  to show there exists  $c \in [1, 2]$  such that g(c) = 0, that is,  $f(c) = c^3$ .

## **Bounded Functions**

**Definition 2.2.6** A function f is said to be **bounded on the interval** [a, b] if there exist numbers L and U such that  $L \leq f(x) \leq U$  for all  $a \leq x \leq b$ . That is

$$\exists L, U \in \mathbb{R} : \forall x \in [a, b], L \le f(x) \le U.$$

Alternatively, there exists  $M \ge 0$  such that  $|f(x)| \le M$  for all  $a \le x \le b$  i.e.

$$\exists M \in \mathbb{R} : \forall x \in [a, b], |f(x)| \le M.$$

A function f is said to **attain its lower bound** on the interval [a, b] if there exists  $c \in [a, b]$  such that  $f(c) \leq f(x)$  for all  $a \leq x \leq b$ , i.e

$$\exists c \in [a, b] : \forall x \in [a, b], f(c) \le f(x).$$

A function f is said to **attain its upper bound** on the interval [a, b] if there exists  $d \in [a, b]$  such that  $f(x) \leq f(d)$  for all  $a \leq x \leq b$ , i.e

$$\exists d \in [a, b] : \forall x \in [a, b], f(d) \ge f(x).$$

**Recall** that we previously stated, without proof, that

•  $\lim_{x\to a} f(x) = L$  if, and only if,  $f(y_n) \to L$  as  $n \to \infty$  for all sequences  $\{y_n\}_{n\geq 1}$  with  $y_n \neq a$  for all  $n \geq 1$  and  $y_n \to a$  as  $n \to \infty$ .

Because f is continuous at a if, and only if,  $\lim_{x\to a} f(x) = f(a)$  we get

• f is continuous at a iff  $f(y_n) \to f(a)$  as  $n \to \infty$  for all sequences  $\{y_n\}_{n \ge 1}$ with  $y_n \to a$  as  $n \to \infty$ .

(There is no need to exclude  $y_n = a$  since f is defined at a.)

We will make use of sequences to prove a boundedness result but first we need an important result from the theory of sequences.

**Definition 2.2.7** Given a sequence a subsequence remains after deleting elements from the sequence.

Thus given a sequence  $\{x_n\}_{n\geq 1}$  a subsequence is denoted by  $\{x_{n_k}\}_{k\geq 1}$ , where  $1 \leq n_1 < n_2 < n_3 < \dots$  So  $n_k$  is the k-th term remaining after some terms have been removed from the original sequence. If none of the first k terms are removed than  $n_k = k$ . If any of the first k terms had been removed than  $n_k > k$ . Hence  $n_k \geq k$  for all  $k \geq 1$ . **Theorem 2.2.8** The Bolzano-Weierstrass Theorem (1817) A bounded sequence of real numbers has a convergent subsequence.

**Proof** not given in lectures. It was also stated without proof in MATH10242. But see the Appendix.

**Theorem 2.2.9** A function continuous on a closed, bounded interval, [a, b], is bounded.

**Proof** by contradiction. The definition of bounded on an interval is

$$\exists M \ge 0, \forall x : a \le x \le b \implies |f(x)| \le M.$$

The negation of this is

$$\forall M \ge 0, \exists x : a \le x \le b \text{ and } |f(x)| > M.$$
(2)

(Recall from truth tables that we have the logical equivalence

$$\operatorname{not}\left(p \Rightarrow q\right) \equiv p \text{ and } (\operatorname{not} q)$$

for propositions p and q.)

We assume (2) for contradiction and apply it repeatedly with  $M = n \in \mathbb{N}$ , to find points  $x_n : a \leq x_n \leq b$  and  $|f(x_n)| > n$ .

We thus get a sequence  $\{x_n\}_{n>1}$ .

The points of this sequence satisfy  $a \leq x_n \leq b$ , and so it is a bounded sequence. Thus by the Bolzano-Weierstrass Theorem it has a *convergent* subsequence  $\{x_{n_k}\}_{k>1}$ . Let c be the limit of this sequence, i.e.

$$c = \lim_{k \to \infty} x_{n_k}$$

Then  $a \leq c \leq b$  since  $a \leq x_{n_k} \leq b$  for all  $k \geq 1$ . Since f is continuous on [a, b] we have, as noted above, that

$$\lim_{k \to \infty} f(x_{n_k}) = f(c) \,. \tag{3}$$

But, by definition of the sequence, we have

$$|f(x_{n_k})| > n_k,\tag{4}$$

while  $n_k \geq k$  for all k implies that  $n_k \to \infty$  as  $k \to \infty$ . So (4) tells us that  $\{f(x_{n_k})\}_k$  is an unbounded sequence, i.e. it diverges, while (3) tells us converges to a finite value, f(c). This contradiction means our assumption is false and thus f is bounded.

Can we remove any of the assumptions in the Theorem and still deduce that f is bounded?

**Example 2.2.10** f(x) = 1/x on (0, 1] is continuous but not bounded.

So it is important in Theorem 2 that the interval [a, b] is closed.

**Example 2.2.11** f(x) = x on  $[1, \infty)$  is continuous but not bounded.

So it is important in Theorem 2 that the interval [a, b] is bounded. To sum up, f continuous on a

> closed and bounded interval  $\implies f$  is bounded, closed interval  $\implies f$  is bounded, bounded interval  $\implies f$  is bounded.

Given that a continuous function on a closed interval is bounded the proof we give that it *attains* its bounds depends on a **TRICK**.

**Theorem 2.2.12** Suppose that f is a function continuous on a closed and bounded interval [a, b]. Then there exist  $c, d \in [a, b]$  such that

$$f(c) \le f(x) \le f(d)$$

for all  $x \in [a, b]$ .

So the upper and lower bounds for f are *attained* at x = d and x = c and we can talk about the maximum and minimum values of f.

**Proof** Since f is a function continuous on a closed interval [a, b] it is bounded by the previous Theorem, and thus the set of real numbers  $\{f(x) : a \le x \le b\}$ is bounded. Since this set is non-empty the Completeness axiom implies that the set has a least upper bound. Let

$$M = \operatorname{lub}\left\{f(x) : a \le x \le b\right\},\,$$

so  $f(x) \leq M$  for all  $a \leq x \leq b$ .

Assume for a contradiction that M is **not** attained, i.e. f(x) < M for all  $a \le x \le b$ . Then M - f(x) > 0 in which case

$$g(x) := \frac{1}{M - f(x)}$$

is well-defined on [a, b]. By the rules for continuous functions g is continuous on [a, b]. Hence, by the previous Theorem, g is bounded above. That is, there exists K > 0 say, such that

$$\frac{1}{M - f(x)} \le K$$

for all  $a \leq x \leq b$ . This rearranges to give

$$f(x) \le M - \frac{1}{K},$$

for all  $a \leq x \leq b$ , i.e. M - 1/K is an upper bound for  $\{f(x) : a \leq x \leq b\}$ . But this contradicts the fact that M is the *least* of all upper bounds for this set. Thus our assumption is false, i.e. M is attained. That is, there exists  $d \in [a, b]$  such that

$$f(d) = M \ge f(x)$$

for all  $x \in [a, b]$ , since M is an upper bound for f on [a, b].

I leave it to the student (and the tutorial) to show that the greatest lower bound of f on [a, b] is attained.

Combining the last two results and we have

**Theorem 2.2.13** Boundedness Theorem (1861) A function continuous on a closed, bounded interval, [a, b], is bounded and attains its bounds.

In fact, if f is continuous on a closed interval [a, b] then f takes on every value between the maximum and minimum values of f, a result not proved in this course. In other words the image set f([a, b]) is a closed interval [f(e), f(k)] or, more succinctly, "the continuous image of a closed interval is a closed interval".



Note It is important for these last two results that we have f is continuous, the domain, [a, b], is closed, and the domain, [a, b], is bounded. If any of these three conditions fail to hold the conclusion may well not hold.