Part 2.2 Continuous functions and their properties

Intermediate Values

Theorem 2.2.1 (Bolzano 1817) Intermediate Value Theorem
Suppose that f is a function continuous on a closed and bounded interval $[a, b]$.
For all γ between $f(a)$ and $f(b)$ there exist $c: a \leq c \leq b$ for which $f(c)=\gamma$.
Here 'between' means $f(a) \leq \gamma \leq f(b)$ if $f(a) \leq f(b), f(b) \leq \gamma \leq f(a)$ otherwise.

Important Do get the order of the quantifiers correct, "for all" first and "there exists" second, i.e.
$\forall \gamma$ between $f(a)$ and $f(b) \exists c: a \leq c \leq b$ and $f(c)=\gamma$.
On a graph you would be starting with a point γ on the y-axis and finding a point c on the x-axis which maps to it.

Before the proof recall \mathbb{R} is complete. This means that every non-empty subset of \mathbb{R} which is bounded above has a least upper bound. That is:
$(A \subseteq \mathbb{R}: A \neq \phi$ and $\exists M: \forall a \in A, a \leq M) \Longrightarrow \operatorname{lub} A$ exists.
And the definition of $\operatorname{lub} A$ is that, if $\lambda=\operatorname{lub} A$ then

- λ is an upper bound: $\forall a \in A, a \leq \lambda$,
- λ is the least of all upper bounds; if μ is an upper bound for A then $\lambda \leq \mu$.

Alternatively

- For all $\delta>0, \lambda-\delta$ is not an upper bound for A which means $\exists a \in$ $A: \lambda-\delta<a \leq \lambda$.

Proof of I V Th ${ }^{\mathrm{m}}$ We first 'translate and reflect' the function f. There are two cases;

- If $f(a) \leq f(b)$ then $f(a) \leq \gamma \leq f(b)$. Define $g(x)=f(x)-\gamma$, then $g(a) \leq 0$ and $g(b) \geq 0$.
- If $f(a)>f(b)$ then $f(b) \leq \gamma<f(a)$. This time define $g(x)=\gamma-f(x)$, then again $g(a) \leq 0$ and $g(b) \geq 0$.
Summing up, define

$$
g(x)= \begin{cases}f(x)-\gamma & \text { if } f(a) \leq f(b) \\ \gamma-f(x) & \text { if } f(a)>f(b) .\end{cases}
$$

Then $g(a) \leq 0 \leq g(b)$.
If either $g(a)=0$ or $g(b)=0$ the proof is finished, simply choose $c=a$ or b respectively.

Thus we may assume that we have strict inequalities in $g(a)<0<g(b)$ and it suffices to find $c \in(a, b): g(c)=0$.

Consider the set

$$
\mathcal{S}=\{x \in[a, b]: g(x)<0\} .
$$

Then $\mathcal{S} \neq \phi$ since $a \in \mathcal{S}$, while $\mathcal{S} \subseteq[a, b]$ and so \mathcal{S} is bounded above by b. Therefore, by the Completeness Axiom of \mathbb{R}, there exists $c \in \mathbb{R}: c=\operatorname{lub} \mathcal{S}$.

We want to first show that $c \in(a, b)$, i.e. $c \neq a$ or b. From the definition of a function being continuous on a closed interval we have $\lim _{x \rightarrow a+} g(x)=g(a)$ and $\lim _{x \rightarrow b-} g(x)=g(b)$.

Following the method of an earlier lemma we choose $\varepsilon=|g(a)| / 2>0$ in the definition of. $\lim _{x \rightarrow a+} g(x)=g v(a)$, to find $\delta_{1}>0$ such that if $a<x<a+\delta_{1}$ then $g(x)<g(a) / 2<0$. This means $\left[a, a+\delta_{1}\right) \subseteq \mathcal{S}$ and so $c \geq a+\delta_{1}$.

Similarly, choosing $\varepsilon=g(b) / 2>0$ in the definition of. $\lim _{x \rightarrow b-} g(x)=$ $g(b)$, we find $\delta_{2}>0$ such that if $b-\delta_{2}<x \leq b$ then $g(x)>g(b) / 2>0$. this means all such $x \notin \mathcal{S}$ and so $c \leq b-\delta_{2}$.

From these two observations we deduce that $c \in(a, b)$.
Let $\varepsilon>0$ be given. Since g is continuous at c there exists $\delta>0$ such that if $|x-c|<\delta$ then $|g(x)-g(c)|<\varepsilon$. That is

$$
\begin{equation*}
c-\delta<x<c+\delta \Longrightarrow g(x)-\varepsilon<g(c)<g(x)+\varepsilon . \tag{1}
\end{equation*}
$$

First, choose $x_{1}=c+\delta / 2$. Then (1) implies $g(c)>g\left(x_{1}\right)-\varepsilon$. Yet $x_{1}>c$, an upper bound on \mathcal{S} and so $x_{1} \notin \mathcal{S}$, that is $g\left(x_{1}\right) \geq 0$. Combine to get $g(c)>-\varepsilon$.

Next, since $c-\delta<c$, the least upper bound on \mathcal{S}, we have that $c-\delta$ is not an upper bound on \mathcal{S}, i.e. there exists some $x_{2} \in \mathcal{S}$ satisfying $c-\delta<x_{2}<c$. Then (1) implies $g(c)<g\left(x_{2}\right)+\varepsilon$. Yet $x_{2} \in \mathcal{S}$ implies $g\left(x_{2}\right)<0$. Combine as $g(c)<\varepsilon$.

Further combine to get $-\varepsilon<g(c)<\varepsilon$. True for all $\varepsilon>0$ implies $g(c)=0$.

There is a good chance you will have used this result, for example by finding roots of a polynomial by looking for a sign change.

Example 2.2.2 Let $p(x)=x^{3}-6 x^{2}+11 x-6$. Show that there is a zero of this polynomial between 0 and 4. Is there a zero between 0 and 2.5?

Solution $p(0)=-6$ and $p(4)=6$ so $p(0)<0<p(4)$, i.e. 0 is an intermediate value between $p(0)$ and $p(4)$. Since p is a polynomial it is continuous so we can apply the Intermediate Value Theorem with $\gamma=0$ to deduce that there exists $0<c<4$ for which $p(c)=0$.

Since $p(2.5)=-0.375$ there is no sign change between 0 and 2.5 so we cannot apply the Intermediate Value Theorem with $\gamma=0$ to show there is a zero in $[0,2.5]$. This is a weakness of this method to find roots for it is not hard to see that $x=1$ is a root of $p(x)$ in $[0,2.5]$.

In fact, from the graph you can see two roots between 0 and 2.5 .

Example 2.2.3 Show that for all real $a, b>0$ there is a solution to $a \sin x=$ $b \cos x$ in $[0, \pi / 2]$.

Solution in Tutorial Let $f(x)=a \sin x-b \cos x$. We see that $f(0)=-b$ and $f(\pi / 2)=a$ so $f(0)<0<f(\pi / 2)$. Since f is continuous on $[0, \pi / 2]$ the Intermediate Value Theorem implies there exists $c \in(0, \pi / 2)$ such that $f(c)=0$, i.e. $a \sin c=b \cos c$.

Example 2.2.4 (A special case of the) Fixed Point Theorem. If f : $[0,1] \rightarrow[0,1]$ is continuous then there exists $c \in[0,1]$ such that $f(c)=c$.

Solution Define $g(x)=f(x)-x$, a function continuous on $[0,1]$. By definition $0 \leq f(x) \leq 1$ for all $0 \leq x \leq 1$. In particular $f(0) \geq 0$ and so

$$
g(0)=f(0)-0 \geq 0 .
$$

Similarly, $f(1) \leq 1$ so

$$
g(1)=f(1)-1 \leq 1-1=0 .
$$

That is, $g(1) \leq 0 \leq g(0)$. So apply I.V.Thm to g on $[0,1]$ to find $c: g(c)=0$, i.e. $f(c)=c$.

This result should not be a surprise. Being continuous on a closed interval the function f is 'tied down' at $f(0)$ and $f(1)$. Since these values are between 0 and 1 the graph between them has to cross the line $y=x$. See Figure 1.

The same result should hold with $y=x$ replaced by any continuous function between $(0,0)$ and $(1,1)$. For example see Figure 2 where $y=x^{3}$.

Figure 1: $y=x$

Figure 2: $y=x^{3}$

Example 2.2.5 If $f: \mathbb{R} \rightarrow[1,8]$ is continuous then there exists $c \in \mathbb{R}$ such that $f(c)=c^{3}$.

Solution in Tutorial If there is a solution of $f(c)=c^{3}$ then, since $1 \leq$ $f(c) \leq 8$ we have $1 \leq c^{3} \leq 8$, i.e. $1 \leq c \leq 2$. This could be seen on the graph:

So we need only apply the Intermediate Value Theorem on the interval [1, 2].

Let $g(x)=f(x)-x^{3}$.
Then $g(1)=f(1)-1^{3} \geq 1-1=0$ since $f(x) \geq 1$ for all $x \in[1,2]$.
Also $g(2)=f(2)-2^{3} \leq 8-8=0$ since $f(x) \geq 8$ for all $x \in[1,2]$.

Thus $g(1) \geq 0 \geq g(2)$, i.e. 0 is an intermediate value. Apply the Intermediate Value Theorem to g on $[1,2]$ with $\gamma=0$ to show there exists $c \in[1,2]$ such that $g(c)=0$, that is, $f(c)=c^{3}$.

Bounded Functions

Definition 2.2.6 A function f is said to be bounded on the interval $[a, b]$ if there exist numbers L and U such that $L \leq f(x) \leq U$ for all $a \leq x \leq b$. That is

$$
\exists L, U \in \mathbb{R}: \forall x \in[a, b], L \leq f(x) \leq U .
$$

Alternatively, there exists $M \geq 0$ such that $|f(x)| \leq M$ for all $a \leq x \leq b$ i.e.

$$
\exists M \in \mathbb{R}: \forall x \in[a, b],|f(x)| \leq M
$$

A function f is said to attain its lower bound on the interval $[a, b]$ if there exists $c \in[a, b]$ such that $f(c) \leq f(x)$ for all $a \leq x \leq b$, i.e

$$
\exists c \in[a, b]: \forall x \in[a, b], f(c) \leq f(x) .
$$

A function f is said to attain its upper bound on the interval $[a, b]$ if there exists $d \in[a, b]$ such that $f(x) \leq f(d)$ for all $a \leq x \leq b$, i.e

$$
\exists d \in[a, b]: \forall x \in[a, b], f(d) \geq f(x) .
$$

Recall that we previously stated, without proof, that

- $\lim _{x \rightarrow a} f(x)=L$ if, and only if, $f\left(y_{n}\right) \rightarrow L$ as $n \rightarrow \infty$ for all sequences $\left\{y_{n}\right\}_{n \geq 1}$ with $y_{n} \neq a$ for all $n \geq 1$ and $y_{n} \rightarrow a$ as $n \rightarrow \infty$.

Because f is continuous at a if, and only if, $\lim _{x \rightarrow a} f(x)=f(a)$ we get

- f is continuous at a iff $f\left(y_{n}\right) \rightarrow f(a)$ as $n \rightarrow \infty$ for all sequences $\left\{y_{n}\right\}_{n \geq 1}$ with $y_{n} \rightarrow a$ as $n \rightarrow \infty$.
(There is no need to exclude $y_{n}=a$ since f is defined at a.)
We will make use of sequences to prove a boundedness result but first we need an important result from the theory of sequences.

Definition 2.2.7 Given a sequence a subsequence remains after deleting elements from the sequence.

Thus given a sequence $\left\{x_{n}\right\}_{n \geq 1}$ a subsequence is denoted by $\left\{x_{n_{k}}\right\}_{k \geq 1}$, where $1 \leq n_{1}<n_{2}<n_{3}<\ldots$. So n_{k} is the k-th term remaining after some terms have been removed from the original sequence. If none of the first k terms are removed than $n_{k}=k$. If any of the first k terms had been removed than $n_{k}>k$. Hence $n_{k} \geq k$ for all $k \geq 1$.

Theorem 2.2.8 The Bolzano-Weierstrass Theorem (1817) A bounded sequence of real numbers has a convergent subsequence.

Proof not given in lectures. It was also stated without proof in MATH10242. But see the Appendix.

Theorem 2.2.9 A function continuous on a closed, bounded interval, $[a, b]$, is bounded.

Proof by contradiction. The definition of bounded on an interval is

$$
\exists M \geq 0, \forall x: a \leq x \leq b \Longrightarrow|f(x)| \leq M .
$$

The negation of this is

$$
\begin{equation*}
\forall M \geq 0, \exists x: a \leq x \leq b \text { and }|f(x)|>M . \tag{2}
\end{equation*}
$$

(Recall from truth tables that we have the logical equivalence

$$
\operatorname{not}(p \Rightarrow q) \equiv p \text { and }(\operatorname{not} q)
$$

for propositions p and q.)
We assume (2) for contradiction and apply it repeatedly with $M=n \in \mathbb{N}$, to find points $x_{n}: a \leq x_{n} \leq b$ and $\left|f\left(x_{n}\right)\right|>n$.

We thus get a sequence $\left\{x_{n}\right\}_{n \geq 1}$.
The points of this sequence satisfy $a \leq x_{n} \leq b$, and so it is a bounded sequence. Thus by the Bolzano-Weierstrass Theorem it has a convergent subsequence $\left\{x_{n_{k}}\right\}_{k \geq 1}$. Let c be the limit of this sequence, i.e.

$$
c=\lim _{k \rightarrow \infty} x_{n_{k}} .
$$

Then $a \leq c \leq b$ since $a \leq x_{n_{k}} \leq b$ for all $k \geq 1$. Since f is continuous on $[a, b]$ we have, as noted above, that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=f(c) . \tag{3}
\end{equation*}
$$

But, by definition of the sequence, we have

$$
\begin{equation*}
\left|f\left(x_{n_{k}}\right)\right|>n_{k}, \tag{4}
\end{equation*}
$$

while $n_{k} \geq k$ for all k implies that $n_{k} \rightarrow \infty$ as $k \rightarrow \infty$. So (4) tells us that $\left\{f\left(x_{n_{k}}\right)\right\}_{k}$ is an unbounded sequence, i.e. it diverges, while (3) tells us converges to a finite value, $f(c)$. This contradiction means our assumption is false and thus f is bounded.

Can we remove any of the assumptions in the Theorem and still deduce that f is bounded?

Example 2.2.10 $f(x)=1 / x$ on $(0,1]$ is continuous but not bounded.
So it is important in Theorem 2 that the interval $[a, b]$ is closed.
Example 2.2.11 $f(x)=x$ on $[1, \infty)$ is continuous but not bounded.
So it is important in Theorem 2 that the interval $[a, b]$ is bounded.
To sum up, f continuous on a

$$
\begin{gathered}
\text { closed and bounded interval } \Longrightarrow f \text { is bounded, } \\
\text { closed interval } \nRightarrow f \text { is bounded, } \\
\text { bounded interval } \nRightarrow f \text { is bounded. }
\end{gathered}
$$

Given that a continuous function on a closed interval is bounded the proof we give that it attains its bounds depends on a TRICK.

Theorem 2.2.12 Suppose that f is a function continuous on a closed and bounded interval $[a, b]$. Then there exist $c, d \in[a, b]$ such that

$$
f(c) \leq f(x) \leq f(d)
$$

for all $x \in[a, b]$.
So the upper and lower bounds for f are attained at $x=d$ and $x=c$ and we can talk about the maximum and minimum values of f.

Proof Since f is a function continuous on a closed interval $[a, b]$ it is bounded by the previous Theorem, and thus the set of real numbers $\{f(x): a \leq x \leq b\}$ is bounded. Since this set is non-empty the Completeness axiom implies that the set has a least upper bound. Let

$$
M=\operatorname{lub}\{f(x): a \leq x \leq b\},
$$

so $f(x) \leq M$ for all $a \leq x \leq b$.
Assume for a contradiction that M is not attained, i.e. $f(x)<M$ for all $a \leq x \leq b$. Then $M-f(x)>0$ in which case

$$
g(x):=\frac{1}{M-f(x)}
$$

is well-defined on $[a, b]$. By the rules for continuous functions g is continuous on $[a, b]$. Hence, by the previous Theorem, g is bounded above. That is, there exists $K>0$ say, such that

$$
\frac{1}{M-f(x)} \leq K
$$

for all $a \leq x \leq b$. This rearranges to give

$$
f(x) \leq M-\frac{1}{K},
$$

for all $a \leq x \leq b$, i.e. $M-1 / K$ is an upper bound for $\{f(x): a \leq x \leq b\}$. But this contradicts the fact that M is the least of all upper bounds for this set. Thus our assumption is false, i.e. M is attained. That is, there exists $d \in[a, b]$ such that

$$
f(d)=M \geq f(x)
$$

for all $x \in[a, b]$, since M is an upper bound for f on $[a, b]$.
I leave it to the student (and the tutorial) to show that the greatest lower bound of f on $[a, b]$ is attained.

Combining the last two results and we have
Theorem 2.2.13 Boundedness Theorem (1861) A function continuous on a closed, bounded interval, $[a, b]$, is bounded and attains its bounds.

In fact, if f is continuous on a closed interval $[a, b]$ then f takes on every value between the maximum and minimum values of f, a result not proved in this course. In other words the image set $f([a, b])$ is a closed interval [$f(e), f(k)$] or, more succinctly, "the continuous image of a closed interval is a closed interval".

Note It is important for these last two results that we have f is continuous, the domain, $[a, b]$, is closed, and the domain, $[a, b]$, is bounded. If any of these three conditions fail to hold the conclusion may well not hold.

