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Intermediate Values

Theorem 2.2.1 (Bolzano 1817) Intermediate Value Theorem

Suppose that f is a function continuous on a closed and bounded interval
[a, b].

For all γ between f(a) and f(b) there exist c : a ≤ c ≤ b for which f(c) = γ.

Here ‘between’ means f(a) ≤ γ ≤ f(b) if f(a) ≤ f(b) , f(b) ≤ γ ≤ f(a)
otherwise.

Important Do get the order of the quantifiers correct, “for all” first and
“there exists” second, i.e.

∀γ between f(a) and f(b) ∃ c : a ≤ c ≤ b and f(c) = γ.

On a graph you would be starting with a point γ on the y-axis and finding
a point c on the x-axis which maps to it.
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Before the proof recall R is complete. This means that every non-empty
subset of R which is bounded above has a least upper bound. That is:

(A ⊆ R : A 6= φ and ∃M : ∀a ∈ A, a ≤ M) =⇒ lubA exists.

And the definition of lubA is that, if λ = lubA then

• λ is an upper bound : ∀a ∈ A, a ≤ λ,

• λ is the least of all upper bounds; if µ is an upper bound for A then
λ ≤ µ.
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Alternatively

• For all δ > 0, λ − δ is not an upper bound for A which means ∃ a ∈
A : λ− δ < a ≤ λ.

Proof of I V Thm We first ‘translate and reflect’ the function f . There
are two cases;

• If f(a) ≤ f(b) then f(a) ≤ γ ≤ f(b). Define g(x) = f(x) − γ, then
g(a) ≤ 0 and g(b) ≥ 0.

• If f(a) > f(b) then f(b) ≤ γ < f(a) . This time define g(x) = γ−f(x),
then again g(a) ≤ 0 and g(b) ≥ 0.

Summing up, define

g(x) =

{

f(x)− γ if f(a) ≤ f(b)

γ − f(x) if f(a) > f(b) .

Then g(a) ≤ 0 ≤ g(b).

If either g(a) = 0 or g(b) = 0 the proof is finished, simply choose c = a or b
respectively.

Thus we may assume that we have strict inequalities in g(a) < 0 < g(b)
and it suffices to find c ∈ (a, b) : g(c) = 0.

Consider the set
S = {x ∈ [a, b] : g(x) < 0} .

Then S 6= φ since a ∈ S, while S ⊆ [a, b] and so S is bounded above by b.
Therefore, by the Completeness Axiom of R, there exists c ∈ R : c = lubS.

We want to first show that c ∈ (a, b), i.e. c 6= a or b. From the definition of
a function being continuous on a closed interval we have limx→a+ g(x) = g(a)
and limx→b− g(x) = g(b).

Following the method of an earlier lemma we choose ε = |g(a)| /2 > 0
in the definition of. limx→a+ g(x) = gv (a), to find δ1 > 0 such that if
a < x < a + δ1 then g(x) < g(a) /2 < 0. This means [a, a + δ1) ⊆ S and so
c ≥ a+ δ1.

Similarly, choosing ε = g(b) /2 > 0 in the definition of. limx→b− g(x) =
g(b), we find δ2 > 0 such that if b− δ2 < x ≤ b then g(x) > g(b) /2 > 0. this
means all such x /∈ S and so c ≤ b− δ2.
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From these two observations we deduce that c ∈ (a, b).

Let ε > 0 be given. Since g is continuous at c there exists δ > 0 such
that if |x− c| < δ then |g(x)− g(c)| < ε. That is

c− δ < x < c+ δ =⇒ g(x)− ε < g(c) < g(x) + ε. (1)

First, choose x1 = c+ δ/2. Then (1) implies g(c) > g(x1)− ε. Yet x1 > c,
an upper bound on S and so x1 /∈ S, that is g(x1) ≥ 0. Combine to get
g(c) > −ε.

Next, since c−δ < c, the least upper bound on S, we have that c−δ is not
an upper bound on S, i.e. there exists some x2 ∈ S satisfying c− δ < x2 < c.
Then (1) implies g(c) < g(x2) + ε. Yet x2 ∈ S implies g(x2) < 0. Combine
as g(c) < ε.

Further combine to get −ε < g(c) < ε. True for all ε > 0 implies
g(c) = 0. �

There is a good chance you will have used this result, for example by
finding roots of a polynomial by looking for a sign change.

Example 2.2.2 Let p(x) = x3 − 6x2 + 11x− 6. Show that there is a zero of
this polynomial between 0 and 4. Is there a zero between 0 and 2.5?

Solution p(0) = −6 and p(4) = 6 so p(0) < 0 < p(4), i.e. 0 is an intermediate
value between p(0) and p(4). Since p is a polynomial it is continuous so we
can apply the Intermediate Value Theorem with γ = 0 to deduce that there
exists 0 < c < 4 for which p(c) = 0.

Since p(2.5) = −0.375 there is no sign change between 0 and 2.5 so we
cannot apply the Intermediate Value Theorem with γ = 0 to show there is
a zero in [0, 2.5]. This is a weakness of this method to find roots for it is not
hard to see that x = 1 is a root of p(x) in [0, 2.5]. �
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In fact, from the graph you can see two roots between 0 and 2.5.
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Example 2.2.3 Show that for all real a, b > 0 there is a solution to a sin x =
b cosx in [0, π/2] .

Solution in Tutorial Let f(x) = a sin x − b cos x. We see that f(0) = −b
and f(π/2) = a so f(0) < 0 < f(π/2). Since f is continuous on [0, π/2]
the Intermediate Value Theorem implies there exists c ∈ (0, π/2) such that
f(c) = 0, i.e. a sin c = b cos c. �

Example 2.2.4 (A special case of the) Fixed Point Theorem. If f :
[0, 1] → [0, 1] is continuous then there exists c ∈ [0, 1] such that f(c) = c.

Solution Define g(x) = f(x)− x, a function continuous on [0, 1]. By defini-
tion 0 ≤ f(x) ≤ 1 for all 0 ≤ x ≤ 1. In particular f(0) ≥ 0 and so

g(0) = f(0)− 0 ≥ 0.

Similarly, f(1) ≤ 1 so

g(1) = f(1)− 1 ≤ 1− 1 = 0.

That is, g(1) ≤ 0 ≤ g(0). So apply I.V.Thm to g on [0, 1] to find c : g(c) = 0,
i.e. f(c) = c. �

This result should not be a surprise. Being continuous on a closed interval
the function f is ‘tied down’ at f(0) and f(1). Since these values are between
0 and 1 the graph between them has to cross the line y = x. See Figure 1.
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The same result should hold with y = x replaced by any continuous
function between (0, 0) and (1, 1). For example see Figure 2 where y = x3.
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Figure 1: y = x
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Figure 2: y = x3

Example 2.2.5 If f : R → [1, 8] is continuous then there exists c ∈ R such
that f(c) = c3.

Solution in Tutorial If there is a solution of f(c) = c3 then, since 1 ≤
f(c) ≤ 8 we have 1 ≤ c3 ≤ 8, i.e. 1 ≤ c ≤ 2. This could be seen on the
graph:
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So we need only apply the Intermediate Value Theorem on the interval
[1, 2].

Let g(x) = f(x)− x3.

Then g(1) = f(1)− 13 ≥ 1− 1 = 0 since f(x) ≥ 1 for all x ∈ [1, 2].

Also g(2) = f(2)− 23 ≤ 8− 8 = 0 since f(x) ≥ 8 for all x ∈ [1, 2].
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Thus g(1) ≥ 0 ≥ g(2), i.e. 0 is an intermediate value. Apply the Interme-
diate Value Theorem to g on [1, 2] with γ = 0 to show there exists c ∈ [1, 2]
such that g(c) = 0, that is, f(c) = c3. �
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Bounded Functions

Definition 2.2.6 A function f is said to be bounded on the interval [a, b]
if there exist numbers L and U such that L ≤ f(x) ≤ U for all a ≤ x ≤ b.
That is

∃L,U ∈ R : ∀x ∈ [a, b] , L ≤ f(x) ≤ U.

Alternatively, there exists M ≥ 0 such that |f (x)| ≤ M for all a ≤ x ≤ b
i.e.

∃M ∈ R : ∀x ∈ [a, b] , |f(x)| ≤ M.

A function f is said to attain its lower bound on the interval [a, b] if
there exists c ∈ [a, b] such that f(c) ≤ f(x) for all a ≤ x ≤ b, i.e

∃ c ∈ [a, b] : ∀x ∈ [a, b] , f(c) ≤ f(x) .

A function f is said to attain its upper bound on the interval [a, b] if
there exists d ∈ [a, b] such that f(x) ≤ f(d) for all a ≤ x ≤ b, i.e

∃ d ∈ [a, b] : ∀x ∈ [a, b] , f(d) ≥ f(x) .

Recall that we previously stated, without proof, that

• limx→a f(x) = L if, and only if, f(yn) → L as n → ∞ for all sequences
{yn}n≥1

with yn 6= a for all n ≥ 1 and yn → a as n → ∞.

Because f is continuous at a if, and only if, limx→a f(x) = f(a) we get

• f is continuous at a iff f(yn) → f(a) as n → ∞ for all sequences {yn}n≥1

with yn → a as n → ∞.

(There is no need to exclude yn = a since f is defined at a.)

We will make use of sequences to prove a boundedness result but first we
need an important result from the theory of sequences.

Definition 2.2.7 Given a sequence a subsequence remains after deleting
elements from the sequence.

Thus given a sequence {xn}n≥1
a subsequence is denoted by {xnk

}
k≥1

,

where 1 ≤ n1 < n2 < n3 < .... So nk is the k-th term remaining after some
terms have been removed from the original sequence. If none of the first k
terms are removed than nk = k. If any of the first k terms had been removed
than nk > k. Hence nk ≥ k for all k ≥ 1 .
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Theorem 2.2.8 The Bolzano-Weierstrass Theorem (1817) A bounded
sequence of real numbers has a convergent subsequence.

Proof not given in lectures. It was also stated without proof in MATH10242.
But see the Appendix. �

Theorem 2.2.9 A function continuous on a closed, bounded interval, [a, b] ,
is bounded.

Proof by contradiction. The definition of bounded on an interval is

∃M ≥ 0, ∀x : a ≤ x ≤ b =⇒ |f(x)| ≤ M.

The negation of this is

∀M ≥ 0, ∃x : a ≤ x ≤ b and |f(x)| > M. (2)

(Recall from truth tables that we have the logical equivalence

not (p ⇒ q) ≡ p and (not q)

for propositions p and q.)

We assume (2) for contradiction and apply it repeatedly withM = n ∈ N,
to find points xn : a ≤ xn ≤ b and |f(xn)| > n.

We thus get a sequence {xn}n≥1
.

The points of this sequence satisfy a ≤ xn ≤ b, and so it is a bounded
sequence. Thus by the Bolzano-Weierstrass Theorem it has a convergent
subsequence {xnk

}
k≥1

. Let c be the limit of this sequence, i.e.

c = lim
k→∞

xnk
.

Then a ≤ c ≤ b since a ≤ xnk
≤ b for all k ≥ 1. Since f is continuous on

[a, b] we have, as noted above, that

lim
k→∞

f(xnk
) = f(c) . (3)

But, by definition of the sequence, we have

|f(xnk
)| > nk, (4)

while nk ≥ k for all k implies that nk → ∞ as k → ∞. So (4) tells us
that {f(xnk

)}
k
is an unbounded sequence, i.e. it diverges, while (3) tells us

converges to a finite value, f(c). This contradiction means our assumption
is false and thus f is bounded. �

Can we remove any of the assumptions in the Theorem and still deduce
that f is bounded?
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Example 2.2.10 f(x) = 1/x on (0, 1] is continuous but not bounded.

So it is important in Theorem 2 that the interval [a, b] is closed.

Example 2.2.11 f(x) = x on [1,∞) is continuous but not bounded.

So it is important in Theorem 2 that the interval [a, b] is bounded.

To sum up, f continuous on a

closed and bounded interval =⇒ f is bounded,

closed interval 6=⇒ f is bounded,

bounded interval 6=⇒ f is bounded.

Given that a continuous function on a closed interval is bounded the proof
we give that it attains its bounds depends on a TRICK.

Theorem 2.2.12 Suppose that f is a function continuous on a closed and
bounded interval [a, b]. Then there exist c, d ∈ [a, b] such that

f(c) ≤ f(x) ≤ f(d)

for all x ∈ [a, b].

So the upper and lower bounds for f are attained at x = d and x = c and
we can talk about the maximum and minimum values of f .

Proof Since f is a function continuous on a closed interval [a, b] it is bounded
by the previous Theorem, and thus the set of real numbers {f(x) : a ≤ x ≤ b}
is bounded. Since this set is non-empty the Completeness axiom implies that
the set has a least upper bound. Let

M = lub {f(x) : a ≤ x ≤ b} ,

so f(x) ≤ M for all a ≤ x ≤ b.

Assume for a contradiction that M is not attained, i.e. f(x) < M for all
a ≤ x ≤ b. Then M − f(x) > 0 in which case

g(x) :=
1

M − f(x)
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is well-defined on [a, b]. By the rules for continuous functions g is continuous
on [a, b] . Hence, by the previous Theorem, g is bounded above. That is,
there exists K > 0 say, such that

1

M − f(x)
≤ K

for all a ≤ x ≤ b. This rearranges to give

f(x) ≤ M −
1

K
,

for all a ≤ x ≤ b, i.e. M − 1/K is an upper bound for {f(x) : a ≤ x ≤ b}.
But this contradicts the fact that M is the least of all upper bounds for this
set. Thus our assumption is false, i.e. M is attained. That is, there exists
d ∈ [a, b] such that

f(d) = M ≥ f(x)

for all x ∈ [a, b] , since M is an upper bound for f on [a, b].

I leave it to the student (and the tutorial) to show that the greatest
lower bound of f on [a, b] is attained.

�

Combining the last two results and we have

Theorem 2.2.13 Boundedness Theorem (1861) A function continuous
on a closed, bounded interval, [a, b] , is bounded and attains its bounds. �

In fact, if f is continuous on a closed interval [a, b] then f takes on every
value between the maximum and minimum values of f , a result not proved
in this course. In other words the image set f([a, b]) is a closed interval
[f(e) , f(k)] or, more succinctly, “the continuous image of a closed interval is
a closed interval”.

Maximum

value = f(d)

Minimum

value = f(c)

c d

Note It is important for these last two results that we have f is continuous,

the domain, [a, b] , is closed, and the domain, [a, b] , is bounded. If any of these

three conditions fail to hold the conclusion may well not hold.
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